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This paper studies solitons in optical metamaterials by the aid of mapping method. There are two types of nonlinear media 
taken into consideration. They are Kerr law and parabolic law nonlinearity. The constraint conditions, on the parameters, 
that needs to hold for the solitons to exist, are also listed. 
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1. Introduction 
 
Optical metamaterials is a cutting edge technology 

that is being studied in the context of optical fibers at 
present times. These metamaterials carry a lot of promise 
and hope to address the dynamics of solitons through 
optical fibers. The integrability aspect of the model 
equation is being investigated by several authors across the 
globe, since its first appearance in 2011 [1-20]. Since 
2011, there is always a constant thrive to extract soliton 
solutions to the model. There are several integration 
techniques that are being applied to secure soliton and 
other solutions to the model. Several of these results are 
already reported during the past few years [1-5, 11]. 

This paper utilizes a different and unique approach to 
retrieve soliton solutions to the model that is studied in 
metamaterials. This is the mapping method. This scheme 
obtains doubly periodic functions to the model and finally 
in the limiting case for modulus of ellipticity, solitons 
emerge from the mathematical analysis. The scheme is 
applied to two forms of nonlinear media, which are Kerr 
law and parabolic law. The details are described in the rest 
of the paper. 

 
 
2. Overview of mapping method  
 
In this section, we give an analysis of mapping 

methods which will be employed in this paper [6, 7, 9]. 
The analysis given below is in general for a system of 
partial differential equations (PDE)s [10] but in this paper 
we have applied it for a single PDE.  

Consider a nonlinear coupled PDE with two 
dependent variables u  and v  and two independent 
variables x  and t  given by  
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where subscripts denote partial derivatives with respect to 
the corresponding independent variables and F is a 
polynomial function of the indicated variables. 

Step-1: Assume that eq. (1) has a traveling wave 
solution in the form 
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where tx λξ −= , iA , iB  and λ  are arbitrary 

constants, 1l  and 2l  are integers and if  represents 
integer powers of  f . The first derivative of f  with 
respect to ξ  denoted by f ′  can be expressed in powers 
of f  in the form  
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where p , q and r  are arbitrary constants. The 
motivation for eq. (3) was that the squares of the first 
derivatives of Jacobi elliptic functions (JEF)s can be 
expressed in even powers of themselves.  
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Step-2: Substituting eq. (2) into eq. (1), the PDE 

reduces to an ODE. Balancing the highest order derivative 
term and the highest order nonlinear term of the ODE, the 
values of  1l  and 2l  can be found.  

Step-3: Substituting for u  and v  and using eq. (3), 
the ODE gives rise to a set of algebraic equations by 
setting the coefficients of various powers of  f  to zero.   

Step-4: From the values of the parameters iA , 

iB , p , q and r , the solution of eq. (1) can be derived.  
Thus a mapping relation is established through eq. (2) 

between the solution to eq. (3) and that of eq. (1). It is to 
be noted that if the values of  1l  and 2l  are integers, we 
can use the method directly to get a variety of solutions in 
terms of hyperbolic functions or JEFs. If they are non 
integers, the equation may still have solutions as rational 
expressions involving hyperbolic functions or JEFs. 
 
 

3. Application to metamaterials  
 

The mapping scheme described above will be applied 
to optical metamaterials. The governing equation for 
optical metamaterials is given by the nonlinear 
Schrödinger’s equation (NLSE) given by  
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In (4), the dependent variable that represents the 

complex valued wave profile is denoted by q  and its 

complex conjugate is *q . The independent variables are 
x  and t  which represents spatial and temporal variables. 
Next, the first term on the left hand side is linear evolution. 
The coefficient of a  is the group velocity dispersion 
(GVD) and the nonlinearity is represented by the 
functional F . On the right hand side, α  is the coefficient 
of intermodal dispersion, while λ  is the self-steepening 
term to avoid the formation of shock waves and ν  gives 
the coefficient of nonlinear dispersion.  Finally the 
coefficients of jθ  for 3,2,1=j  are accounted for 
metamaterials [1-4, 11].  

Also in (4), F  is a real-valued algebraic function 
and it is necessary to have the smoothness of the complex 

function CCqqF a:)( 2
. Considering the complex 

plane C  as a two-dimensional linear space 2R , the 

function qqF )( 2
 is k times continuously differentiable, 

so that [1] 
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This paper wil consider only two forms of 
nonlinearity. They are Kerr law and parabolic law that are 
discussed in details in the next two subsections. 
 

3.1 Kerr law nonlinearity  
 

This law arises when the refractive index of light is 
intensity dependent. For Kerr law nonlinearity, ssF =)(  
and therefore this form of nonlinearity is also referred to as 
cubic nonlinearity. Most commercial optical fibers obey 
this Kerr law of nonlinearity. For Kerr law medium, the 
NLSE given by (4) modifies to 
 

0)(

)()(
*2

3
2

2
2

1

22

2

=+++

++

=++

xxxxxx

xx

xxxt

qqqqqq

qqiqqi

qiqqbaqiq

θθθ

νλ

α

        (6) 

 
To derive soliton solutions, the starting hypothesis is  

 
ϕietxPtxq ),(),( = , θωκϕ ++−= tx          (7) 

 
where κ  is the wave number, ω  is the soliton frequency 
and θ  is the phase constant. Substituting eq. (7) into eq. 
(6) and separating them into real and imaginary parts, we 
obtain  
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and  
 

x
PP

x
Pa

t
P

∂
∂

+−−+

=
∂
∂

+−
∂
∂

2
321 )22623(

)2(

κθκθκθνλ

κα
       (9) 

 
respectively.  

Next, considering the traveling wave solution  
)(),( τPtxP =  where )( vtxB −=τ , where B  and v  

are constants, eq. (8) becomes  
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where prime denotes differentiation with respect to 

τ . The imaginary part leads to the relations 
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and  
 

0)3(223 321 =−+−+ θθθκνλ                  (12) 
 

Eq. (11) gives the speed of the soliton and eq. (12) is 
the constraint relation that must be valid in order for the 
solitons to exist.  

Now, Eq. (10) can be written in the form  
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where,  
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Applying the mapping method, we can assume the 

solution structure of eq. (13) in the form [6, 7, 9] 
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where f  satisfies eq. (3). Substituting eq. (15) into eq. 
(13) and using eq. (3), we obtain a polynomial in f  given 
by  
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Equating the coefficients of different powers of f  in 

eq. (16), we arrive at the following algebraic equations:  
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Eqs. (17) and (18) lead us to 03 =A  and 04 =A . 

This gives rise to 01 =θ  and 032 ==θθ . From the 

coefficients of 3f , 2f   and the constant term, we obtain 
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So, we can easily see that 1a  can be written as 
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Case-1: )1( 2mp +−= , 22mq = , 1=τ  
Here, eq. (3) gives )(sn)( ττ =f . In this case, eq. 

(4) gives rise to the periodic wave solution [8]  
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As 1→m , eq.(21) one recovers dark soliton 

solution  
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Case-2: 12 2 −= mp , 22mq −= , 21 m−=τ  
So, eq.(3) yields )(cn)( ττ =f . In this case, eq.   

(4) gives rise to the periodic wave solution [8] 
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As 1→m , eq.(23) one obtains bright soliton 

solution  
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Case-3: )1( 2mp +−= , 2=q , 2m=τ  
Here, eq.(3) gives  )(ns)( ττ =f . Therefore,  eq.  

(4) gives rise to the periodic wave solution [8]   
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As 1→m , eq.(25) leads us to the singular soliton 

solution  
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These solitons and doubly periodic solutions, listed in 

(21)-(26) immediately introduce the constraint condition  
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Thus, the solitons and doubly periodic functions will 
exist provided the constraint relation of the parameters 
hold.  
 

3.2  Parabolic law nonlinearity 
 

The equation under consideration, for this law of 
nonlinearity, is  
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This law is commonly known as the cubic-quintic 

nonlinearity. The second term of nonlinearity on the left 
hand side of (28) is large for the case of p-toluene 
sulfonate crystals. This law arises in the nonlinear 
interaction between Langmuir waves and electrons. It 
describes the nonlinear interaction between the high 
frequency Langmuir waves and the ion-acoustic waves by 
pondermotive forces.  

Substituting eq. (5) into eq. (28) and considering the 
traveling wave solution as in section 3, the imaginary part 
remains the same as before and the real part becomes 
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where , 1A , 2A , 3A  and 4A  are as in eq. (14) with b  

replaced by 1b  and )( 2
25 aBbA −= .   

Assuming the solution of eq. (29) in the form of eq.  
(15) and using eq.  (3), we get a fifth degree polynomial in 
f . The coefficients of different powers of f  give rise to 

a set of algebraic equations whose solutions give  
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and get the constraint condition  
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Case-1: )1( 2mp +−= , 22mq = , 1=τ  
Here, eq. (3) gives )(sn)( ττ =f . In this case, eq. 

(28) gives rise to the periodic wave solution [8]  
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As 1→m , eq.(32) leads us dark soliton solution  
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Case-2: 12 2 −= mp , 22mq −= , 21 m−=τ  
So, eq.(3) yields )(cn)( ττ =f . In this case, eq. 

(28) gives rise to the periodic wave solution [8] 
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As 1→m , eq.(34) does not give rise to a solitary 

wave solution.  
Case-3: )1( 2mp +−= , 2=q , 2m=τ  
Here, eq.(3) gives )(ns)( ττ =f . In this case, eq.  

(28) gives rise to the periodic wave solution [8]   
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As 1→m , eq.(35) leads us to the singular solitary 

wave solution  
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It needs to be noted that the doubly periodic 

functions, for this law of nonlinearity, given by (32) and 
(35) will exist provided  
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Consequently, dark soliton and singular soliton will 

exist if  
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Finally, the cnoidal wave solution given by (34) will 

exist with the constraint  
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4. Conclusion 
 

This paper retrieved soliton solutions to the NLSE in 
optical metamaterials with Kerr and parabolic law 
nonlinearity. The mapping method is applied to obtain 
these solutions. The results of this paper came with certain 
constraints that must hold for these solitons to exist. These 
soliton solutions are recovered after a limiting process 
applied to doubly periodic functions when the modulus of 
ellipticity approached unity. This approach is therefore a 
very unique method to derive soliton solutions. 

Later the results will be extended to the case when 
several perturbation terms will be considered.  Better yet, 
soliton perturbation theory will be applied to give the 
adiabatic variation of these soliton parameters. Several 
other integration tools will be adopted to obtain soliton 
and other solutions. The results of those researches are 
awaited at this time.  
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